• 0
    • ارسال درخواست
    • حذف همه
    • Industrial Standards
    • Defence Standards
  • درباره ما
  • درخواست موردی
  • فهرست استانداردها
    • Industrial Standards
    • Defence Standards
  • راهنما
  • Login
  • لیست خرید شما 0
    • ارسال درخواست
    • حذف همه
View Item 
  •   YSE
  • Industrial Standards
  • NACE - NACE International
  • View Item
  •   YSE
  • Industrial Standards
  • NACE - NACE International
  • View Item
  • All Fields
  • Title(or Doc Num)
  • Organization
  • Year
  • Subject
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Archive

NACE 34105

Effect of Nonextractable Chlorides on Refinery Corrosion and Fouling - Item No. 24226

Organization:
NACE - NACE International
Year: 2005

Abstract: Introduction
Most chloride salts in the crude oil coming into a refinery are inorganic (sodium, magnesium, or calcium chloride) and are effectively removed by the desalter. The nonextractable chlorides are not removed in the desalter, but can break down from downstream heating and processing to form hydrochloric acid (HCl). They sometimes cause corrosion and fouling problems. The forms of these chlorides are still being determined, but probably include organic chlorides (either natural or added via treatment chemicals or by the disposal of slops into the crudes); inorganic chlorides encapsulated in high-melting-point waxes or asphaltenes; or chlorinated solvents used in upstream operations.
The primary locations of problems to date have been in CDUs and NHTs. Within this report, the term CDU includes atmospheric and/or vacuum distillation units. Some types of nonextractable chlorides break down (by hydrolysis and pyrolysis), primarily in the CDU atmospheric and/or vacuum heaters, causing corrosion problems in the tower overheads. With other types, only a very small percentage break down in the CDU and most of the chlorides go downstream to the NHT. There are also reports of nonextractable chlorides found in gas oils going into the applicable downstream units.
Even with as little as 1% of the nonextractable chlorides breaking down in the CDU, a major increase in the atmospheric tower overhead HCl and chloride levels can occur and cause severe corrosion and fouling problems. One refinery had new overhead condenser tubes fail in less than 14 hours with a corrosion rate of about 1,000 mm/y (40,000 mpy). All incoming chlorides are converted to HCl by the hydrotreating reaction in NHT units. One refinery with nonextractable chloride corrosion in the NHT experienced 5 to 30 mm/y (200 to 1,200 mpy) rates on the tubes and shell of the feed/effluent exchangers, reducing the service life of the exchangers to 33 days.
URI: http://yse.yabesh.ir/std;jse/handle/yse/88971
Collections :
  • NACE - NACE International
  • Download PDF : (123.7Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    NACE 34105

Show full item record

contributor authorNACE - NACE International
date accessioned2017-09-04T16:25:41Z
date available2017-09-04T16:25:41Z
date copyright01/01/2005
date issued2005
identifier otherTYLDACAAAAAAAAAA.pdf
identifier urihttp://yse.yabesh.ir/std;jse/handle/yse/88971
description abstractIntroduction
Most chloride salts in the crude oil coming into a refinery are inorganic (sodium, magnesium, or calcium chloride) and are effectively removed by the desalter. The nonextractable chlorides are not removed in the desalter, but can break down from downstream heating and processing to form hydrochloric acid (HCl). They sometimes cause corrosion and fouling problems. The forms of these chlorides are still being determined, but probably include organic chlorides (either natural or added via treatment chemicals or by the disposal of slops into the crudes); inorganic chlorides encapsulated in high-melting-point waxes or asphaltenes; or chlorinated solvents used in upstream operations.
The primary locations of problems to date have been in CDUs and NHTs. Within this report, the term CDU includes atmospheric and/or vacuum distillation units. Some types of nonextractable chlorides break down (by hydrolysis and pyrolysis), primarily in the CDU atmospheric and/or vacuum heaters, causing corrosion problems in the tower overheads. With other types, only a very small percentage break down in the CDU and most of the chlorides go downstream to the NHT. There are also reports of nonextractable chlorides found in gas oils going into the applicable downstream units.
Even with as little as 1% of the nonextractable chlorides breaking down in the CDU, a major increase in the atmospheric tower overhead HCl and chloride levels can occur and cause severe corrosion and fouling problems. One refinery had new overhead condenser tubes fail in less than 14 hours with a corrosion rate of about 1,000 mm/y (40,000 mpy). All incoming chlorides are converted to HCl by the hydrotreating reaction in NHT units. One refinery with nonextractable chloride corrosion in the NHT experienced 5 to 30 mm/y (200 to 1,200 mpy) rates on the tubes and shell of the feed/effluent exchangers, reducing the service life of the exchangers to 33 days.
languageEnglish
titleNACE 34105num
titleEffect of Nonextractable Chlorides on Refinery Corrosion and Fouling - Item No. 24226en
typestandard
page16
statusActive
treeNACE - NACE International:;2005
contenttypefulltext
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian
 
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian