• 0
    • ارسال درخواست
    • حذف همه
    • Industrial Standards
    • Defence Standards
  • درباره ما
  • درخواست موردی
  • فهرست استانداردها
    • Industrial Standards
    • Defence Standards
  • راهنما
  • Login
  • لیست خرید شما 0
    • ارسال درخواست
    • حذف همه
View Item 
  •   YSE
  • Industrial Standards
  • ASTM - ASTM International
  • View Item
  •   YSE
  • Industrial Standards
  • ASTM - ASTM International
  • View Item
  • All Fields
  • Title(or Doc Num)
  • Organization
  • Year
  • Subject
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Archive

Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

ASTM E263-25

Organization:
ASTM - ASTM International
Year: 2025

Abstract: 5.1 Refer to Guide E844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. 5.2 Refer to Practice E261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. 5.3 Pure iron in the form of foil or wire is readily available and easily handled. 5.4 Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1).3 This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E1018 for recommended tabulated dosimetry cross sections. 5.5 54Mn has a half-life of 312.19 (3) days4 (2) and emits a gamma ray with an energy of 834.855 (3) keV (2). 5.6 Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46) h 56Mn, 44.494 (12) days 59Fe, and 5.2711 (8) years 60Co (2, 3). (Consult the latest version of Ref (2) for more precise values currently accepted for the half-lives.) Interference from 56Mn can be eliminated by waiting 48 h before counting. Although chemical separation of 54Mn from the irradiated iron is the most effective method for eliminating 59Fe and 60Co, direct counting of iron for 54Mn is possible using high-resolution detector systems or unfolding or stripping techniques, especially if the dosimeter was covered with cadmium or boron during irradiation. Altering the isotopic composition of the iron dosimeter is another useful technique for eliminating interference from extraneous activities when direct sample counting is to be employed. 5.7 The vapor pressures of manganese and iron are such that manganese diffusion losses from iron can become significant at temperatures above about 700 °C. Therefore, precautions must be taken to avoid the diffusion loss of 54Mn from iron dosimeters at high temperature. Encapsulating the iron dosimeter in quartz or vanadium will contain the manganese at temperatures up to about 900 °C. 5.8 Sections 6, 7, and 8 that follow were specifically written to describe the method of chemical separation and subsequent counting of the 54Mn activity. When one elects to count the iron dosimeters directly, those portions of Sections 6, 7, and 8 that pertain to radiochemical separation should be disregarded. Note 1: The following portions of this test method apply also to direct sample counting methods: 6.1 – 6.3, 7.4, 7.9, 7.10, 8.1 – 8.5, 8.18, 8.19, and Sections 9 – 12.
URI: http://yse.yabesh.ir/std;jsery=autho/handle/yse/343814
Collections :
  • ASTM - ASTM International
  • Download PDF : (347.2Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

Show full item record

contributor authorASTM - ASTM International
date accessioned2025-09-30T19:29:01Z
date available2025-09-30T19:29:01Z
date copyright2025
date issued2025
identifier othere0263-25.pdf
identifier urihttp://yse.yabesh.ir/std;jsery=autho/handle/yse/343814
description abstract5.1 Refer to Guide E844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. 5.2 Refer to Practice E261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. 5.3 Pure iron in the form of foil or wire is readily available and easily handled. 5.4 Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1).3 This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E1018 for recommended tabulated dosimetry cross sections. 5.5 54Mn has a half-life of 312.19 (3) days4 (2) and emits a gamma ray with an energy of 834.855 (3) keV (2). 5.6 Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46) h 56Mn, 44.494 (12) days 59Fe, and 5.2711 (8) years 60Co (2, 3). (Consult the latest version of Ref (2) for more precise values currently accepted for the half-lives.) Interference from 56Mn can be eliminated by waiting 48 h before counting. Although chemical separation of 54Mn from the irradiated iron is the most effective method for eliminating 59Fe and 60Co, direct counting of iron for 54Mn is possible using high-resolution detector systems or unfolding or stripping techniques, especially if the dosimeter was covered with cadmium or boron during irradiation. Altering the isotopic composition of the iron dosimeter is another useful technique for eliminating interference from extraneous activities when direct sample counting is to be employed. 5.7 The vapor pressures of manganese and iron are such that manganese diffusion losses from iron can become significant at temperatures above about 700 °C. Therefore, precautions must be taken to avoid the diffusion loss of 54Mn from iron dosimeters at high temperature. Encapsulating the iron dosimeter in quartz or vanadium will contain the manganese at temperatures up to about 900 °C. 5.8 Sections 6, 7, and 8 that follow were specifically written to describe the method of chemical separation and subsequent counting of the 54Mn activity. When one elects to count the iron dosimeters directly, those portions of Sections 6, 7, and 8 that pertain to radiochemical separation should be disregarded. Note 1: The following portions of this test method apply also to direct sample counting methods: 6.1 – 6.3, 7.4, 7.9, 7.10, 8.1 – 8.5, 8.18, 8.19, and Sections 9 – 12.
languageEnglish
titleStandard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Ironen
titleASTM E263-25num
typestandard
statusActive
treeASTM - ASTM International:;2025
contenttypefulltext
scope1.1 This test method describes procedures for measuring reaction rates by the activation reaction 54Fe(n,p)54Mn. 1.2 This activation reaction is useful for measuring neutrons with energies above approximately 2.2 MeV and for irradiation times up to about three years, provided that the analysis methods described in Practice E261 are followed. If dosimeters are analyzed after irradiation periods longer than three years, the information inferred about the fluence during irradiation periods more than three years before the end of the irradiation should not be relied upon without supporting data from dosimeters withdrawn earlier. 1.3 With suitable techniques, fission neutron fluence rates above 108 cm−2·s−1 can be determined. However, in the presence of a high thermal neutron fluence rate (for example, >2 × 1014 cm−2·s−1), 54Mn depletion should be investigated. 1.4 Detailed procedures describing the use of other fast-neutron detectors are referenced in Practice E261. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
identifier DOI10.1520/E0263-25
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian
 
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian