• 0
    • ارسال درخواست
    • حذف همه
    • Industrial Standards
    • Defence Standards
  • درباره ما
  • درخواست موردی
  • فهرست استانداردها
    • Industrial Standards
    • Defence Standards
  • راهنما
  • Login
  • لیست خرید شما 0
    • ارسال درخواست
    • حذف همه
View Item 
  •   YSE
  • Industrial Standards
  • ASTM - ASTM International
  • View Item
  •   YSE
  • Industrial Standards
  • ASTM - ASTM International
  • View Item
  • All Fields
  • Title(or Doc Num)
  • Organization
  • Year
  • Subject
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Archive

Standard Practice for Ultrasonic Angle-Beam Contact Testing

ASTM E587-15

Organization:
ASTM - ASTM International
Year: 2025

Abstract: 4.1 An electrical pulse is applied to a piezoelectric transducer which converts electrical to mechanical energy. In the angle-beam search unit, the piezoelectric element is generally a thickness expander which creates compressions and rarefactions. This longitudinal (compressional) wave travels through a wedge (generally a plastic). The angle between transducer face and the examination face of the wedge is equal to the angle between the normal (perpendicular) to the examination surface and the incident beam. Fig. 1 shows the incident angle φi, and the refracted angle φr, of the ultrasonic beam. Subsurface reflectors may be detected by Rayleigh waves if they lie within one wavelength of the surface. 4.3.4 Lamb Waves—Lamb waves travel at 90° to the normal of the test surface and fill thin materials with elliptical particle vibrations. These vibrations occur in various numbers of layers and travel at velocities varying from slower than Rayleigh up to nearly longitudinal wave velocity, depending on material thickness and examination frequency. Asymmetrical-type Lamb waves have an odd number of elliptical layers of vibration, while symmetrical-type Lamb waves have an even number of elliptical layers of vibration. Lamb waves are most useful in materials up to five wavelengths thick (based on Rayleigh wave velocity in a thick specimen of the same material). They will detect surface imperfections on both the examination and opposite surfaces. Centrally located laminations are best detected with the first or second mode asymmetrical Lamb waves (one or three elliptical layers). Small thickness changes are best detected with the third or higher mode symmetrical or asymmetrical-type Lamb waves (five or more elliptical layers). A change in plate thickness causes a change of vibrational mode just as a lamination causes a mode change. The mode conversion is imperfect and may produce indications at the leading and the trailing edges of the lamination or the thin area.
URI: http://yse.yabesh.ir/std;jsery=autho/handle/yse/343828
Collections :
  • ASTM - ASTM International
  • Download PDF : (542.1Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Standard Practice for Ultrasonic Angle-Beam Contact Testing

Show full item record

contributor authorASTM - ASTM International
date accessioned2025-09-30T19:29:08Z
date available2025-09-30T19:29:08Z
date copyright2025
date issued2025
identifier othere0587-15r25.pdf
identifier urihttp://yse.yabesh.ir/std;jsery=autho/handle/yse/343828
description abstract4.1 An electrical pulse is applied to a piezoelectric transducer which converts electrical to mechanical energy. In the angle-beam search unit, the piezoelectric element is generally a thickness expander which creates compressions and rarefactions. This longitudinal (compressional) wave travels through a wedge (generally a plastic). The angle between transducer face and the examination face of the wedge is equal to the angle between the normal (perpendicular) to the examination surface and the incident beam. Fig. 1 shows the incident angle φi, and the refracted angle φr, of the ultrasonic beam. Subsurface reflectors may be detected by Rayleigh waves if they lie within one wavelength of the surface. 4.3.4 Lamb Waves—Lamb waves travel at 90° to the normal of the test surface and fill thin materials with elliptical particle vibrations. These vibrations occur in various numbers of layers and travel at velocities varying from slower than Rayleigh up to nearly longitudinal wave velocity, depending on material thickness and examination frequency. Asymmetrical-type Lamb waves have an odd number of elliptical layers of vibration, while symmetrical-type Lamb waves have an even number of elliptical layers of vibration. Lamb waves are most useful in materials up to five wavelengths thick (based on Rayleigh wave velocity in a thick specimen of the same material). They will detect surface imperfections on both the examination and opposite surfaces. Centrally located laminations are best detected with the first or second mode asymmetrical Lamb waves (one or three elliptical layers). Small thickness changes are best detected with the third or higher mode symmetrical or asymmetrical-type Lamb waves (five or more elliptical layers). A change in plate thickness causes a change of vibrational mode just as a lamination causes a mode change. The mode conversion is imperfect and may produce indications at the leading and the trailing edges of the lamination or the thin area.
languageEnglish
titleStandard Practice for Ultrasonic Angle-Beam Contact Testingen
titleASTM E587-15num
typestandard
statusActive
treeASTM - ASTM International:;2025
contenttypefulltext
scope1.1 This practice covers ultrasonic examination of materials by the pulse-echo technique, using continuous coupling of angular incident ultrasonic vibrations. 1.2 This practice shall be applicable to development of an examination procedure agreed upon by the users of the practice. 1.3 The values stated in inch-pound units are regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
identifier DOI10.1520/E0587-15R25
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian
 
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian