• 0
    • ارسال درخواست
    • حذف همه
    • Industrial Standards
    • Defence Standards
  • درباره ما
  • درخواست موردی
  • فهرست استانداردها
    • Industrial Standards
    • Defence Standards
  • راهنما
  • Login
  • لیست خرید شما 0
    • ارسال درخواست
    • حذف همه
View Item 
  •   YSE
  • Defence Standards
  • NASA - National Aeronautics and Space Administration (NASA)
  • View Item
  •   YSE
  • Defence Standards
  • NASA - National Aeronautics and Space Administration (NASA)
  • View Item
  • All Fields
  • Title(or Doc Num)
  • Organization
  • Year
  • Subject
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Archive

NASA-TP-2772

Wind-tunnel investigation of a full-scale general aviation airplane equipped with an advanced natural laminar flow wing

Organization:
NASA - National Aeronautics and Space Administration (NASA)
Year: 1987

Abstract: An investigation was conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance, stability, and control characteristics of a full-scale general aviation airplane equipped with an advanced laminar flow wing. The study focused on the effects of natural laminar flow and advanced boundary layer transition on performance, stability, and control, and also on the effects of several wing leading edge modifications on the stall/departure resistance of the configuration. Data were measured over an angle-of-attack range from -6 to 40 deg and an angle-of-sideslip range from -6 to 20 deg. The Reynolds number was varied from 1.4 to 2.4 x 10 to the 6th power based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stall characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance cruise performance. Also, because of the characteristics of the airfoil section, artificially tripping the wing boundary layer to a turbulent condition did not significantly effect the lift, stability, and control characteristics. The addition of a leading-edge droop arrangement was found to increase the stall angle of attack at the wingtips and, therefore, was considered to be effective in improving the stall/departure resistance of the configuration. Also the addition of the droop arrangement resulted in only minor increases in drag.
URI: http://yse.yabesh.ir/std;query=authoCA5893FD081D49A96159DD6EFDEC014A/handle/yse/220643
Collections :
  • NASA - National Aeronautics and Space Administration (NASA)
  • Download PDF : (3.811Mb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    NASA-TP-2772

Show full item record

contributor authorNASA - National Aeronautics and Space Administration (NASA)
date accessioned2017-09-04T18:39:00Z
date available2017-09-04T18:39:00Z
date copyright01/01/1987
date issued1987
identifier otherJQWWAEAAAAAAAAAA.pdf
identifier urihttp://yse.yabesh.ir/std;query=authoCA5893FD081D49A96159DD6EFDEC014A/handle/yse/220643
description abstractAn investigation was conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance, stability, and control characteristics of a full-scale general aviation airplane equipped with an advanced laminar flow wing. The study focused on the effects of natural laminar flow and advanced boundary layer transition on performance, stability, and control, and also on the effects of several wing leading edge modifications on the stall/departure resistance of the configuration. Data were measured over an angle-of-attack range from -6 to 40 deg and an angle-of-sideslip range from -6 to 20 deg. The Reynolds number was varied from 1.4 to 2.4 x 10 to the 6th power based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stall characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance cruise performance. Also, because of the characteristics of the airfoil section, artificially tripping the wing boundary layer to a turbulent condition did not significantly effect the lift, stability, and control characteristics. The addition of a leading-edge droop arrangement was found to increase the stall angle of attack at the wingtips and, therefore, was considered to be effective in improving the stall/departure resistance of the configuration. Also the addition of the droop arrangement resulted in only minor increases in drag.
languageEnglish
titleNASA-TP-2772num
titleWind-tunnel investigation of a full-scale general aviation airplane equipped with an advanced natural laminar flow wingen
typestandard
page135
statusActive
treeNASA - National Aeronautics and Space Administration (NASA):;1987
contenttypefulltext
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian
 
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian