• 0
    • ارسال درخواست
    • حذف همه
    • Industrial Standards
    • Defence Standards
  • درباره ما
  • درخواست موردی
  • فهرست استانداردها
    • Industrial Standards
    • Defence Standards
  • راهنما
  • Login
  • لیست خرید شما 0
    • ارسال درخواست
    • حذف همه
View Item 
  •   YSE
  • Industrial Standards
  • ASTM - ASTM International
  • View Item
  •   YSE
  • Industrial Standards
  • ASTM - ASTM International
  • View Item
  • All Fields
  • Title(or Doc Num)
  • Organization
  • Year
  • Subject
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Archive

Standard Guide for Powder Particle Size Analysis

ASTM E2651-25

Organization:
ASTM - ASTM International
Year: 2025

Abstract: 4.1 The myriad array of particle size analysis techniques available to the modern-day powder technologist is both daunting and confusing. Many of the techniques are applicable only to certain types of materials, and all have limited ranges of applicability with respect to powder particle size. This guide is an attempt to describe and define the applicability of each of the available techniques, so that powder technologists, and others interested in powders, may make informed and appropriate choices in characterizing their materials. 4.2 This guide is intended to be used to determine the best and most efficient way of characterizing the particle size distribution of a particular powder material. It may also be used to determine whether a reported powder particle size, or size distribution, was obtained in an appropriate and meaningful way. 4.3 Most particle size analysis techniques report particle size in terms of an “equivalent spherical diameter”: the diameter of an ideal spherical particle of the material of interest that would be detected in the same manner during analysis as the (usually irregular-shaped) actual particle under the same conditions. The different techniques must necessarily use different definitions of the equivalent spherical diameter, based on their different operating principles. However, when analyzing elongated particles, the size parameter most relevant to the intended application should be measured; for example, length (maximum dimension). 4.4 Reported particle size measurement is a function of both the actual dimension or shape factor, or both, as well as the particular physical or chemical properties of the particle being measured. Caution is required when comparing data from instruments operating on different physical or chemical parameters or with different particle size measurement ranges. Sample acquisition, handling, and preparation can also affect reported particle size results.
URI: http://yse.yabesh.ir/std/handle/yse/343970
Collections :
  • ASTM - ASTM International
  • Download PDF : (383.6Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Standard Guide for Powder Particle Size Analysis

Show full item record

contributor authorASTM - ASTM International
date accessioned2025-09-30T19:30:27Z
date available2025-09-30T19:30:27Z
date copyright2025
date issued2025
identifier othere2651-25.pdf
identifier urihttp://yse.yabesh.ir/std/handle/yse/343970
description abstract4.1 The myriad array of particle size analysis techniques available to the modern-day powder technologist is both daunting and confusing. Many of the techniques are applicable only to certain types of materials, and all have limited ranges of applicability with respect to powder particle size. This guide is an attempt to describe and define the applicability of each of the available techniques, so that powder technologists, and others interested in powders, may make informed and appropriate choices in characterizing their materials. 4.2 This guide is intended to be used to determine the best and most efficient way of characterizing the particle size distribution of a particular powder material. It may also be used to determine whether a reported powder particle size, or size distribution, was obtained in an appropriate and meaningful way. 4.3 Most particle size analysis techniques report particle size in terms of an “equivalent spherical diameter”: the diameter of an ideal spherical particle of the material of interest that would be detected in the same manner during analysis as the (usually irregular-shaped) actual particle under the same conditions. The different techniques must necessarily use different definitions of the equivalent spherical diameter, based on their different operating principles. However, when analyzing elongated particles, the size parameter most relevant to the intended application should be measured; for example, length (maximum dimension). 4.4 Reported particle size measurement is a function of both the actual dimension or shape factor, or both, as well as the particular physical or chemical properties of the particle being measured. Caution is required when comparing data from instruments operating on different physical or chemical parameters or with different particle size measurement ranges. Sample acquisition, handling, and preparation can also affect reported particle size results.
languageEnglish
titleStandard Guide for Powder Particle Size Analysisen
titleASTM E2651-25num
typestandard
statusActive
treeASTM - ASTM International:;2025
contenttypefulltext
scope1.1 This guide covers the use of many available techniques for particle size measurement and particle size distribution analysis of solid particulate (powder) materials, off-line in a laboratory. For some of the technologies listed, the techniques discussed may also apply to in-line analysis. The guide is intended to serve as a resource for powder/particle technologists in characterizing their materials. 1.2 This guide provides significant detail regarding the numerous particle size analysis methods available. Although this guide is extensive, it may not be all inclusive. 1.3 The principle of operation, range of applicability, specific requirements (if any), and limitations of each of the included particle size analysis techniques are listed and described, so that users of this guide may choose the most useful and most efficient technique for characterizing the particle size distribution of their particular material(s). 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
identifier DOI10.1520/E2651-25
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian
 
DSpace software copyright © 2017-2020  DuraSpace
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
yabeshDSpacePersian